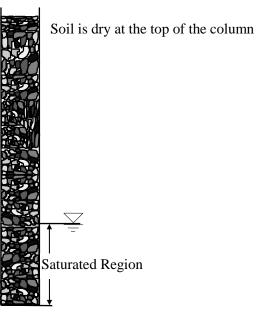
Semaine 3

Exercice 3_1

Dans un sol on a mesuré au moyen de tensiomètres des charges de pression h valant -780 cm et -320 cm à des profondeurs respectives de 0.3 m (point A) et 0.5 m (point B).

Déterminer en chaque point :

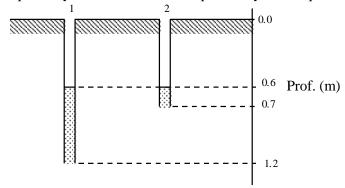

- a) la valeur de la succion Ψ
- b) la valeur de la charge hydraulique en prenant la surface du sol comme référence altimétrique, l'axe des z étant orienté positivement vers le haut. Même situation avec l'axe des z orienté positivement vers le bas.
- c) la différence de charge hydraulique entre les deux points dans les cas évoqués en b). Dans quelle direction s'écoule l'eau ?
- d) les valeurs demandées en b) et c) en plaçant la référence altimétrique à une profondeur arbitraire de 80 cm.

Que peut-on en conclure ?

Exercice 3_2

The soil column shown in the diagram is at hydrostatic conditions. Give schematic diagrams showing:

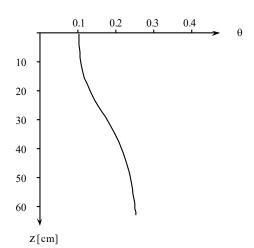
- (a) Variation of moisture content with position (show saturated moisture content, residual moisture content, and indicate the capillary rise height);
- (b) Variation of gravitational head with position;
- (c) Variation of pressure head with position;
- (d) Variation of hydraulic head with position.



Partially Saturated Soil Column

Exercice 3_3

Soit 2 piézomètres ouverts uniquement à leur extrémité inférieure de profondeur 1.2 m (piézomètre 1) et 0.7 m (piézomètre 2).

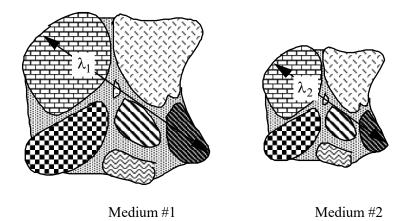

a) Représenter graphiquement les diagrammes de charge de pression, de charge gravitaire et de charge hydraulique du système ci-dessous en équilibre hydrostatique.

- b) Que se passe-t-il dans le cas où le niveau de l'eau dans le piézomètre 1 est à 0.65 m de profondeur et dans le piézomètre 2 à 0.55 m? Dessiner les diagrammes de charge de pression, de charge gravitaire et de charge hydraulique en supposant que la charge hydraulique varie linéairement avec la profondeur. L'eau est-elle en mouvement? Si oui, indiquer la direction du flux.
- c) Déterminer la profondeur de la nappe dans la situation évoquée en b.

Exercice 3_4

a) Deux sols présentent le profil hydrique moyen figurant ci-dessous. Quelles sont les volumes d'irrigation nécessaires pour porter à la capacité de rétention θ_{cr} , sur une parcelle de 0.5 hectares, les 50 premiers cm des sols A et B pour lesquels la relation succion-teneur en eau (en % vol.) est donnée dans le tableau ci-dessous?

Succion [bar]	θ [%]	
	Sol A	Sol B
0	44	52
0.01	44	52
0.02	43.9	52
0.05	38	51
0.1	22.5	48
0.3	12.5	32
1	7	20
10	5.2	13.5
20	5.1	13
100	4.9	12.8


b) En supposant que les sols se trouvent initialement au point de flétrissement temporaire θ_{ft} sur toute la profondeur, quelles quantités d'eau faudrait-il apporter pour reconstituer la RFU.

Remarque:

Humidité remarquable	Succion ψ (cm)	Charge de pression h (cm)
$ heta_{cr}$	300	- 300
Θ_{ft}	10 000	- 10 000

Exercice 3_5

Two porous media are geometrically similar if one is an exactly scaled version of the other, as shown in the figure:

The variable λ is a characteristic dimension of the medium.

- (a) If an arbitrary pore has diameter d in medium #1, what is the corresponding pore diameter in medium #2?
- (b) What is the relationship between the porosity in each medium?
- (c) Now consider the soil moisture characteristic curve (i.e., the relationship between suction and moisture content for the soil) for each medium. Suppose the main wetting curve of medium #1 is given by the function $S_1(h)$ and the corresponding curve for medium #2 be given by $S_2(h)$. For a fixed value of h, which is greater, $S_1(h)$ or $S_2(h)$? Note that S is the volumetric saturation, i.e., the proportion of the pore space filled by water.
- (d) Suppose the soil moisture characteristic curve is controlled by capillary effects only. Show that, under this assumption, the relationship between $S_1(h)$ and $S_2(h)$ can be determined in terms of λ_1 and λ_2 . Hint: Consider a fixed value of S and determine the relationship between h in medium #1 and h in medium #2 for a single (scaled) capillary tube.